Portal für Organische Chemie

Chemie-Nachrichten > Oktober

30.10.07 Rolle von Signalmolekülen bei der Axonverästelung

Verschaltung des Nervensystems - MDC-Forscher auf der Spur eines Schlüsselprozesses

Nervenzellen müssen sich verschalten, damit ein funktionstüchtiges Nervensystem entstehen kann. Sie bilden dazu Zellfortsätze (Axone) aus, die von einem Wachstumskegel an ihrer Spitze geleitet, sich ihren Weg zu anderen Nervenzellen bahnen. Um möglichst viele Zielzellen zu erreichen, verzweigen sich die Axone. Wie sie das tun, war bisher völlig unklar. Neurobiologen des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch, die sich mit der embryonalen Entwicklung des Nervensystems befassen, haben erstmals Licht in diesen Schlüsselprozess gebracht. Sie identifizierten zwei Signalmoleküle, die eine entscheidende Rolle bei der Axonverästelung spielen.

Abb. 1: Schematische Darstellung des Projektionsmusters einer sensorischen Nervenzelle (Neuron) in das Rückenmark. Ein Fortsatz des Neurons (Axon) wandert während der Embryonalentwicklung in die graue Substanz des Rückenmarks, die besonders dicht mit Neuronen gepackt ist. An der Eingangszone der Dorsalwurzel teilt sich der Axonschaft in zwei Äste (1), die auf der Oberfläche des Rückenmarks in entgegengesetzter Richtung weiterwachsen. Aus diesen Ästen sprossen danach an mehreren Stellen Seitenzweige (2) und ermöglichen so die Übertragung eines Reizes auf mehrere Zielzellen.
Quelle: Hannes Schmidt, MDC

Nervenzellen müssen sich verschalten, damit ein funktionstüchtiges Nervensystem entstehen kann. Sie bilden dazu Zellfortsätze (Axone) aus, die von einem Wachstumskegel an ihrer Spitze geleitet, sich ihren Weg zu anderen Nervenzellen bahnen. Um möglichst viele Zielzellen zu erreichen, verzweigen sich die Axone. Wie sie das tun, war bisher völlig unklar. Neurobiologen des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch, die sich mit der embryonalen Entwicklung des Nervensystems befassen, haben erstmals Licht in diesen Schlüsselprozess gebracht. Sie identifizierten zwei Signalmoleküle, die eine entscheidende Rolle bei der Axonverästelung spielen.

"Wie ein Autofahrer auf der Strasse sich nach den Verkehrszeichen richtet, orientieren sich Axone auf ihrem Weg durch das sich entwickelnde Gehirn an molekularen Signalen, um zu ihrem Ziel, sprich anderen Nervenzellen, zu gelangen", erläutert Dr. Hannes Schmidt, einer der Autoren der Studie vom MDC. Ein einzelnes Axon, und da hört die Analogie zu dem Autofahrer auf, verästelt sich, um mehrere Zielgebiete gleichzeitig mit Nervenbahnen zu versorgen.

Abb. 1: Mikroskopische Aufnahme eines verzweigten Nervenfortsatzes (Axon) einer sensorischen Nervenzelle der Maus (linkes Bild). Mäusen, bei denen ein bestimmter Rezeptor (Guanylatzyklase Npr2) defekt ist, fehlt diese Verzweigung und das Axon wächst nur in eine Richtung (rechtes Bild). Dadurch ist die Reizübertragung stark eingeschränkt.
Quelle: Hannes Schmidt, MDC

Auf der Suche nach Signalen, die eine Verästelung von Axonen bewirken, studierten die Forscher die Entwicklung sensorischer Axone im Rückenmark von Mäuseembryonen. Diese Axone leiten Sinnesreize. "Es gibt verschiedene Möglichkeiten, wie sich ein Axon verzweigen kann. So kann sich etwa der Wachstumskegel an der Spitze aufzweigen, oder vom Axonschaft sprossen kollaterale, seitliche Zweige aus", erklärt Dr. Schmidt.

Eine entscheidende Rolle spielen dabei zwei Signalmoleküle: das Rezeptorprotein Npr21 und der molekulare Schalter cGKI2. Ist das erste Signalmolekül defekt oder fehlt das zweite, kann sich der Wachstumskegel an der Spitze des Axons an einer bestimmten Stelle des Rückenmarks nicht mehr in zwei entgegengesetzt wachsende Äste teilen, sondern biegt stattdessen als einzelner Ast in eine Richtung ab.

Die spätere Bildung der Seitenäste ist bemerkenswerterweise vom Ausfall der beiden Signalmoleküle nicht betroffen. Die Forscher vermuten daher, dass für die verschiedenen Formen der axonalen Verzweigung unterschiedliche Signalmoleküle eine Rolle spielen. Elektrophysiologische Tests zeigten aber, dass in der Folge des beobachteten Defekts die Reizübertragung stark eingeschränkt ist.

Jetzt wollen die Wissenschaftler versuchen, die gesamte Signalkette der Moleküle Npr2 und cGKI in sensorischen Neuronen zu entschlüsseln. Außerdem wollen sie prüfen , ob auch die Verzweigung anderer Typen von Nervenzellen durch diese Signalkette gesteuert wird.

Quelle:

The receptor guanylyl cyclase Npr2 is essential for sensory axon bifurcation within the spinal cord
H. Schmidt, A. Stonkute, R. Jüttner, S. Schäffer, J. Buttgereit, R. Feil, F. Hofmann, F. G. Rathjen, Journal of Cell Biology 2007, DOI: 10.1083/jcb.200707176

Bitte zitieren Sie die Seite wie folgt:

Rolle von Signalmolekülen bei der Axonverästelung
(URL: http://www.organische-chemie.ch/chemie/2007okt/nervensystem.shtm)

Verwandte Themen:

Lifesciences