Portal für Organische Chemie

Chemie-Nachrichten > Juli

07.07.09 Klare Unterscheidung zig tausender Moleküle in lebenden Zellen dank nanoskopischer Methode

Fluoreszenzfarbstoffe erlauben Nanoskopische Untersuchung lebender Zellverbünde

Heidelberger Wissenschaftler realisiert Lokalisationsmikroskopie mit grün leuchtendem Protein

Abb. 1: Membranausläufer von vier Brustkrebszellen: Sogar im extremen Weitfeld können mit Fluoreszenzfarbstoffen aus der GFP-Gruppe markierte Moleküle noch im Abstand von etwa 16 nm lokalisiert werden.
Quelle: Uni Heidelberg

Ein hochleistungsfähiges Instrument zur Erforschung zellulärer Vorgänge haben Wissenschaftler der Universität Heidelberg entwickelt: Ihr weltweit schnellstes Nanolichtmikroskop zur 3D-Zellanalyse nutzt dabei ein neues Verfahren der Lokalisationsmikroskopie, die Spectral Precision Distance Microscopy (SPDM): Damit können mehrere lebende Zellen gleichzeitig mit gewöhnlichen, in den Labors sehr gut etablierten Fluoreszenzfarbstoffen wie dem Green Fluorescent Protein (GFP) im molekularen Detail untersucht werden. "Bisher war die lichtoptische Nanoskopie nur mit speziellen schaltbaren Leuchtmolekülen unter hohem Aufwand möglich", betont Prof. Dr. Dr. Christoph Cremer vom Kirchhoff-Institut für Physik.

In der hochauflösenden Nanolichtmikroskopie kommt fluoreszierenden Farbstoffen eine zentrale Rolle zu. Um in der "Dämmerung" der Zelle einzelne benachbarte Moleküle zu lokalisieren und getrennt sichtbar zu machen, müssen sie mit einem zeitlich veränderbaren Lichtsignal versehen werden. Dies geschieht bislang durch die Zugabe von speziell hergestellten Fluoreszenzmolekülen, die durch Licht in geeigneter Weise an- und abgeschaltet werden. Wie aktuelle Forschungen von Prof. Cremer gezeigt haben, kann dieses Schalten unter bestimmten photophysikalischen Bedingungen auch für viele ganz "gewöhnliche" Farbstoffe realisiert werden. Möglich wird dies durch sogenanntes reversibles Bleichen der Fluoreszenzfarbstoffe. Nach Angaben des Wissenschaftlers sind in den biomedizinischen Labors weltweit bereits Millionen von Genkonstrukten mit Farbstoffen aus der GFP-Gruppe vorhanden und wären für diese Lokalisationsmikroskopie unmittelbar einsetzbar.

Abb. 2: Blick in den Kern einer Knochenkrebszelle. Links: Bei der normalen Fluoreszenzmikroskopie sind Strukturdetails nicht erkennbar. Rechts: Mit der 2CLM Zweifarben-Co-Lokalisationsmikroskopie lassen sich Zigtausende (120.000) von Molekülen klar unterscheiden.
Quelle: Uni Heidelberg

Der Heidelberger Forscher und sein Team erweitern mit ihrer Lokalisationsmikroskopie SPDM die Möglichkeiten des von ihnen entwickelten Nanoskops Vertico SMI, das einen extremen Weitfeldblick mit einer außerordentlichen Nanometergenauigkeit verbindet: Damit lassen sich nicht nur große Zellareale, sondern auch Zellverbünde unter Verwendung sichtbaren Laserlichts zweidimensional mit einer Auflösung von bis hinunter zu zehn Nanometer untersuchen. Eine hohe Aufnahmegeschwindigkeit ermöglicht erstmals Nanoaufnahmen ganzer - auch lebender - Zellen in 3D mit einer Auflösung von bis zu 40 Nanometer in Echtzeit.

Eine hohe Dichte an sichtbaren Molekülen ist von Bedeutung, um zum Beispiel Molekülansammlungen als Orte verstärkter Aktivität zu erkennen. Mit dem von Prof. Cremer entwickelten Nanoskopieverfahren können in einem großen Gesichtsfeld mehrere Millionen Einzelmoleküle eines bestimmten Typs lokalisiert und innerhalb von 30 Sekunden mit bis zu 2.000 Einzelbildern - ausreichend für eine Gesamtaufnahme - erfasst werden. Die hohe Aufnahmegeschwindigkeit erlaubt es, extrem nah zusammenliegende Moleküle an Nanostrukturen sogar in lebenden Zellen zu beobachten. Mit der Erweiterung der SPDM zur Mehrfarben-Co-Lokalisationsmikroskopie lassen sich zwei verschiedene Protein-Typen mit gängigen Fluoreszenzmolekülen beispielsweise aus der GFP-Gruppe markieren und durch unterschiedliche Licht-Wellenlängen aufspüren. Dadurch können, so Prof. Cremer, genauere Informationen über mögliche Interaktionen von einzelnen, lokalisierten Proteinmolekülen in Nanostrukturen gewonnen werden als mit dem üblicherweise eingesetzten Untersuchungsverfahren des Fluorescence Resonance Energy Transfer (FRET).

Anwendungsgebiete für Nanoskop und Lokalisationsmikroskopie liegen in der pharmazeutischen, zellbiologischen, medizinischen und biophysikalischen Forschung - überall dort, wo Molekulare Bildgebung ("Molecular Imaging") auf der zellulären Ebene angestrebt wird. Derzeit werden sie in Kooperationsprojekten in den Bereichen Pharmakologie, Kardiologie und der Stammzellforschung eingesetzt. Weitere Einsatzmöglichkeiten sind Untersuchungen zur Interaktion von Viren und Zellen, die aufgrund ihrer geringen Größe nicht mit herkömmlichen Lichtmikroskopen zu erfassen sind, sowie die Erforschung altersbedingter neurologischer Degenerationserscheinungen und die Krebsforschung. Durch die Positionsbestimmung einzelner Moleküle lassen sich zum Beispiel neue Erkenntnisse über die Regulation und die Aktivitäten von Genen und Proteinen oder zu Veränderungen zellulärer Nanostrukturen gewinnen. Weitere Einsatzbereiche sind unter anderem die Materialforschung, die Qualitätskontrolle von Nanobeschichtungen, die Schadensanalyse von Bruchstellen oder die Detektion kleinster Stoffmengen in der Umweltforschung.

Kontakt:

Kontakt:
Prof. Dr. Dr. Christoph Cremer
Kirchhoff-Institut für Physik
Telefon 06221 54-9252
http://www.kip.uni-heidelberg.de/AG_Cremer

Diskussion

Nach kürzlicher Meldung einer aktuellen Methode zum Einsatz von Ultraschall-Detektion von Laser-induzierter Anregung von fluoreszierender Molekülen (MSOT) und des umliegenden Gewebes in lebenden Organismen zur Bildgebung, besprechen wir hier eine weitere State-of-the-Art-Technik, die sehr interessante Bilder in ungekannter Auflösung liefert. Die hier beschriebene Methode kann klar die molekularbiologische Grundlagenforschung beschleunigen und hilft, neue Targets für Wirktstoffe zu identifizieren, wohingegen MSOT eine eher integrale Betrachtung von Gewebe über längere Zeit ermöglicht und daher erlaubt, einen Krankheitsverlauf detailliert zu studieren.

Noch vor 10 Jahren hätte man Bilder wie von der 2CLM Zweifarben-Co-Lokalisationsmikroskopie nie für möglich gehalten. Eine Euphorie ist durchaus angebracht, und ich hoffe, konkrete Anwendungen beider Techniken lassen nicht auf sich warten!

Bitte zitieren Sie die Seite wie folgt:

Klare Unterscheidung zig tausender Moleküle in lebenden Zellen dank nanoskopischer Methode
(URL: https://www.organische-chemie.ch/chemie/2009jul/nanoskopie.shtm)

Verwandte Themen:

Lifesciences, Nanotechnologie, Medizinalchemie