Portal für Organische Chemie

Chemie-Nachrichten > Juni

24.06.09 Kunststoff ändert Fluoreszenzeigenschaften bei feinen Rissen

Gelbes Leuchten

Neuer Kunststoff signalisiert Beschädigung

Forschern des Department of Chemical Engineering, University of California ist es unter Beteiligung eines Wissenschaftlers der Uni Basel gelungen, ein Material aus Polymeren und fluoreszierenden Proteinen herzustellen, das mikroskopische Risse und Schäden visuell selber anzeigen kann. Das könnte dazu beitragen, katastrophales Materialversagen zu verhindern - zum Beispiel bei Flugzeugteilen oder bei Implantaten.

Abb. 1: Unter Spannung: ändert sich in einem Protein-Polymer-Hybridmaterial die mechanische Spannung der Polymermatrix, so löst dies eine Konformationsänderung des Proteinkomplexes aus: Das Material „meldet“ eine strukturelle Schädigung (siehe Bild). Die Reporterkomponente ist ein Chaperonin, das ein Paar fluoreszierender Proteine kovalent bindet. Wird das Chaperonin deformiert, ändert sich der Abstand zwischen den Fluorophoren und folglich auch das FRET-Signal.
Quelle: Angewandte Chemie - mit freundlicher Genehmigung

Bei der Herstellung des Hybridmaterials machten sich die Forscher den Fluoreszenz-Resonanzenergietransfer (FRET) zwischen fluoreszierenden Proteinen zunutze. Dies ist ein physikalischer Prozess, bei dem Energie zwischen zwei nur wenige Nanometer auseinander liegenden fluoreszierenden Proteinen übertragen wird. Da sich bereits kleinste Veränderungen im Abstand zwischen den Molekülen auf die fluoreszierenden Eigenschaften des Proteinpaars auswirken, hat sich FRET in den Naturwissenschaften als optisches Analysewerkzeug etabliert, mit dem sich Abstände im Nanometerbereich messen lassen.

Dr. Nico Bruns vom Departement Chemie der Universität Basel und Mitarbeiter der University of California in Berkeley haben zwei verschiedene leuchtende Proteine in ein drittes, sogenanntes Thermosom-Protein eingebunden und in einem Abstand zueinander platziert, der die Energieübertrag von einem fluoreszierenden Protein auf das andere erlaubt. Anschliessend wurde dieser Proteinkomplex in einen Kunststoff eingebettet. Der Clou dabei ist, dass der hergestellte Proteinkomplex eine Sollbruchstelle aufweist, die genau zwischen den beiden fluoreszierenden Proteinen verläuft.

Solange sich die beiden Proteine - ein cyan-fluoreszierendes Protein und ein gelb-fluoreszierendes Protein - im vorgegebenen Abstand befinden, geben sie ein gelbliches Licht ab, da FRET stattfindet und Energie vom blauen Cyan-Protein auf das gelb-fluoreszierenden Protein übertragen wird. Dadurch leuchtet diese stärker.

Dieser Prozess wird unterbrochen, wenn sich das Polymer verfestigt. Dabei treten feinste mechanische Spannungen auf, die sich auf den Proteinkomplex übertragen. Die beiden Thermosom-Hälften driften dann auseinander, der Abstand der beiden Leucht-Proteine verändert sich und mit ihm die Farbe der Fluoreszenz zu blau. Sobald aber der Kunststoff beschädigt wird und Risse entstehen, entspannt sich der Proteinkomplex um einen Riss herum in seine natürliche Form. Dann findet wiederum FRET statt, was die Farbe der Fluoreszenz im Bereich der Beschädigung von blau zurück zu gelb ändert.

Den Forscher ist es gelungen, mit dem Wechsel der Fluoreszenz im Hybridmaterial mikroskopische Risse unter dem Mikroskop sichtbar zu machen. Nun wollen sie die Methode verfeinern, um damit bereits eine einsetzende Rissbildung im Nanometerbereich aufzuspüren, bevor sie sich zu Mikrorissen und schliesslich zu strukturzerstörenden Brüchen ausweiten kann.

Quelle:

Mechanical Nanosensor Based on FRET within a Thermosome: Damage-Reporting Polymeric Materials
N. Bruns, et. al., Angew. Chem. 2009, DOI: 10.1002/anie.200900554

Bitte zitieren Sie die Seite wie folgt:

Kunststoff ändert Fluoreszenzeigenschaften bei feinen Rissen
(URL: http://www.organische-chemie.ch/chemie/2009jun/kunststoff.shtm)

Verwandte Themen:

Materials Science, Physikalische Chemie