Portal für Organische Chemie

Chemie-Nachrichten > August

24.08.10 Frostschutzprotein bildet erweiterte Hydrathülle

Warum Fische im Eismeer nicht einfrieren

Anti-Freeze-Protein beeinflusst die Bewegung umgebender Wassermoleküle

Chemiker der Rhur-Universität Bochum haben herausgefunden, wie der natürliche Frostschutz funktioniert, der Fische im Eismeer vor dem Erfrieren schützt. Sie konnten beobachten, dass ein Gefrierschutzprotein im Fischblut die Wassermoleküle in seiner Umgebung so verändert, dass ein Ausfrieren unmöglich wird.

Abb. 1: Struktur des Anti-Freeze-Protein mit der erweiterten Hydrathülle
Quelle: RUB

Besser als haushaltsübliche Frostschutzmittel

Bei Temperaturen von minus 1,8° C müsste eigentlich jeder Fisch erstarren: Der Gefrierpunkt für Fischblut liegt bei ungefähr minus 0,9° C. Warum antarktische Fische bei diesen Temperaturen trotzdem beweglich bleiben, interessiert die Forschung seit langem. Schon vor 50 Jahren wurden besondere Gefrierschutzproteine im Blut dieser Fische entdeckt. Diese sog. Anti-Freeze-Proteine funktionieren besser als jedes haushaltsübliche Frostschutzmittel. Wie sie aber funktionieren, war bislang noch ungeklärt. Die Bochumer Forscher setzten ihre Spezialität ein, die Terahertz-Spektroskopie. Mit Hilfe von Terahertz-Strahlung lassen sich die kollektiven Bewegungen von Wassermolekülen und Proteinen beobachten. So konnte die Arbeitsgruppe schon zeigen, dass Wassermoleküle, die in flüssigem Wasser normalerweise einen ständigen Tanz aufführen und dabei immer neue Bindungen untereinander eingehen, in Anwesenheit von Proteinen geordneter tanzen – „aus dem Discotanz wird ein Menuett“, schildert Prof. Havenith-Newen.

Abb. 2: Der Fisch Macropteris maculatus aus dem McMurdo-Sund in der Antarktis. Das Anti-Freeze-Protein verhindert, dass er im Eismeer gefriert.
Quelle: RUB

Mitbringsel einer Antarktis-Expedition

Gegenstand der aktuellen Untersuchungen waren Anti-Freeze-Glycoproteine des antarktischen Seehechts Dissostichus mawsoni, den einer der amerikanischen Kooperationspartner, Arthur L Devries, eigens auf einer Antarktis-Expedition gefischt hatte. „Wir konnten sehen, dass das Protein einen besonders weitreichenden Einfluss auf die Wassermoleküle in seiner Umgebung hat, wir sprechen von einer erweiterten Hydrathülle“, erklärt Mitautor Konrad Meister. „Dieser Einfluss, der die Eiskristallisation verhindert, ist bei tiefen Temperaturen sogar ausgeprägter als bei Zimmertemperatur“, setzt Prof. Havenith-Newen hinzu. Um das Wasser dennoch zum Gefrieren zu bringen, wären tiefere Temperaturen nötig. Wenn man das Protein durch einen speziellen Boratpuffer deaktiviert, funktioniert der Gefrierschutz nicht mehr. In diesem Fall fanden die Forscher auch keine Änderung des Terahertz-Tanzes. Mit ihrer Beobachtung entkräfteten die Forscher die bisherige Annahme, dass eine einzige Bindungsstelle zwischen Anti-Freeze-Protein und Wasser für die Aktivität des Proteins verantwortlich ist. Mit der Untersuchung gelang zum ersten Mal der Nachweis eines direkten Zusammenhangs zwischen der Funktion eines Proteins und seiner Signatur im Terahertz-Bereich.

Quelle:

Modular Chemosensors from Self-Assembled Vesicle Membranes with Amphiphilic Binding Sites and Reporter Dyes
S. Ebbinghaus, et. al., J. Am. Chem. Soc. 2010. DOI: 10.1021/ja1051632

Bitte zitieren Sie die Seite wie folgt:

Frostschutzprotein bildet erweiterte Hydrathülle
(URL: https://www.organische-chemie.ch/chemie/2010/aug/frostschutz.shtm)

Verwandte Themen:

Life Sciences