Portal für Organische Chemie

Chemie-Nachrichten > Dezember

13.12.10 Neuer Wirkstoff blockiert Proteasom reversibel

Neuer Mechanismus zur reversiblen Blockierung des Proteasoms

Reversible Blockierung des Proteasoms eröffnet neue Chancen für Antikrebs-Medikamente und Transplantationsmedizin

Als Recyclinghof der Zelle erfüllt das Proteasom eine lebenswichtige Aufgabe - auch für Krebszellen. Blockiert man es, erstickt die Zelle an ihrem eigenen Müll. Wäre man in der Lage, das Proteasom nur zu bremsen, könnte man auch Abstoßungsreaktionen bei Transplantationen auf diese Weise kontrollieren. Der nun von Wissenschaftlern um Professor Michael Groll von der Technischen Universität München (TUM) aufgeklärte Reaktionsmechanismus einer reversiblen Blockierung des Proteasoms könnte der Schlüssel zu neuen Medikamenten sein.

Abb. 1: Der neue α-Keto-Aldehyd-Peptid-Wirkstoff an seiner Bindungsstelle am Proteasom: Wie ein Schlüssel passt das kleine Molekül in ein Schloss am Proteasom.
Quelle: Michael Groll, Technische Universität München

Krebszellen sind so gefährlich, weil sie sich unkontrolliert und sehr viel schneller als andere Zellen vermehren. Eine Schlüsselstellung dabei besitzt das Proteasom, ein großer Eiweißkomplex, der nicht mehr benötigte Eiweiße wie eine Recyclinganlage abbaut und der Wiederverwertung zuführt. Als Forscher vor ein paar Jahren entdeckten, dass man ihr Wachstum auch durch Blockieren des Proteasoms bremsen kann, schürte das neue Hoffnungen. Das erste Medikament, das diese Strategie anwendet, Bortezomib, erzielt inzwischen einen Umsatz von mehr als einer Milliarde US-Dollar pro Jahr. Doch es blockiert auch andere wichtige Proteine und verursacht so eine Vielzahl schwerwiegender Nebenwirkungen. Weltweit sucht man daher nach Alternativen.

Eine Variante des Proteasoms, das Immuno-Proteasom, spielt bei einer anderen lebenswichtigen Funktion eine wichtige Rolle, der Immunreaktion. Die Produktion menschlichen Insulins in gentechnisch veränderten Bakterien ist eine große Hilfe für Diabetespatienten. Doch täglich die nötige Menge Insulin berechnen und spritzen zu müssen, ist eine erhebliche Belastung. Die Transplantationintakter, Insulin produzierender Inselzellen aus Schweinen könnte eine Lösung sein, doch stehen ihr die Abwehrreaktionen des Immunsystems entgegen. Könnten die Mediziner das Immuno-Proteasom vorübergehend ausbremsen, wäre die Abstoßungsreaktion vielleicht in den Griff zu kriegen.

In beiden Fällen kommt es darauf an, möglichst gezielt eingreifen zu können und möglichst wenig Schaden durch Nebenreaktionen anzurichten. Mit Carfilzomib - einem Derivat des Naturstoffes Epoxomicin - und dem vom Gift des Meeres-Bakteriums Salinispora tropica abgeleitete Salinosporamid A befinden sich bereits zwei weitere Proteasomblocker in klinischen Studien. Für beide Substanzen konnte das Team von Professor Groll in früheren Arbeiten die Wirkmechanismen aufklären. Sie binden deutlich spezifischer an die gewünschte Stelle des Proteasoms als Bortezomib und verursachen daher deutlich weniger Nebenwirkungen. Doch wenn sie angreifen, ist das Proteasom unwiederbringlich zerstört. Gesunde Zellen können überleben, indem sie ein neues Proteasom aufbauen. Bei den schnell wachsenden Krebszellen führt das Chaos, das nicht abgebaute Signalproteine und anderer Proteinmüll anrichten, zum Absterben der Zelle.

Abb. 2: Der Naturstoff Epoxomicin und der tripeptidische α-Ketoaldehyd (Z-Leu-Leu-Tyr-COCHO) mit unterschiedlichen reaktiven Gruppen (in Cyan dargestellt) gefolgt von einem vorgeschlagenen Mechanismus für die Bildung eines Morpholin-Rings und eines 5,6-Dihydro-2H-1,4-oxazins durch Bindung an Thr1. In Magenta sind die neu gebildeten kovalenten Bindungen zwischen dem Protein und den Liganden dargestellt. Die Elektronenübertragungen sind durch gestrichelte Pfeile angedeutet. Rechts: räumliche Darstellung des Inhibitor-Adduktes.
Quelle: Michael Groll, Technische Universität München und Angewandte Chemie

Der Trick des Proteasomblockers Epoxomicin ist eine zweistufige Reaktion. Wie ein Schlüssel passt das kleine Molekül in ein Schloss am Proteasom. Doch auf das reversible Andocken an die Bindungsstelle folgt eine irreversible Ringbildung, und der Schlüssel kann nicht mehr herausgezogen werden. Indem sie eine andere Kopfgruppe wählten, konnten die Wissenschaftler um Professor Michael Groll und Dr. Melissa Gräwert nun mit dem Wirkstoff Z-LLL-α-CO-CHO eine reversible Ringbildung erreichen. Die neue Kopfgruppe enthält in direkter Nachbarschaft eine Aldehyd- und eine Ketogruppe. Sie reagieren mit den Bindungsstellen am Proteasom ebenfalls zu einem Ring - doch die Reaktion dieser beiden Gruppen umkehrbar. So läst sich der Schlüssel wieder aus dem Schloss entfernen und das Proteasom kann seine Arbeit wiederaufnehmen.

Den angenommenen Mechanismus konnten die TUM-Wissenschaftler im Rahmen ihrer vom Exzellenzcluster Center for Integrated Protein Science Munich (CIPSM) unterstützten Arbeit mittels Röntgenstrukturanalyse von Kristallen des blockierten Proteasoms bestätigen. Dabei wurde auch klar, wie die Verbindung in Richtung eines nebenwirkungsarmen Medikaments weiter entwickelt werden kann. Neben der Kopfgruppe enthält die Verbindung eine kurze Kette von Aminosäuren, die sich an Bindungstaschen des Proteasoms anlagern können. Variiert man diese Aminosäuren, so kann man die Verbindung gezielt für den Angriff auf das Immuno-Proteasom optimieren.

„Der hier gezeigte, reversible zweistufige Bindungsmechanismus ist einzigartig für das Proteasom,“ sagt Michael Groll, Inhaber des Lehrstuhls für Biochemie am Department Chemie der TU München. „Dies erklärt die hohe Selektivität und lässt vergleichsweise geringe Nebenwirkungen erwarten. Mit der reversiblen Reaktion öffnet sich uns nun ein viel weiteres Einsatzfeld. Nun können wir diese Verbindungen auch in Richtung von Immunsuppressiva weiter entwickeln.“

Quelle:

α-Keto-Aldehyd-Peptide besitzen ein neuartiges Leitmotiv für die Entwicklung reversibler Proteasominhibitoren
M. A. Gräwert, et al., Angew. Chem. 2010. DOI: 10.1002/ange.201005488

Bitte zitieren Sie die Seite wie folgt:

Neuer Wirkstoff blockiert Proteasom reversibel
(URL: http://www.organische-chemie.ch/chemie/2010/dez/proteasom.shtm)

Verwandte Themen:

Life Sciences, Medizinalchemie