Portal für Organische Chemie

Chemie-Nachrichten > Januar

26.01.10 GaN-Nanosäulen könnten kostengünstige, weisse LEDs ermöglichen

Weißes Licht aus Nanosäulen

Forscher des Paul-Drude-Instituts für Festkörperelektronik entwickeln gemeinsam mit der Industrie und anderen Forschungsinstituten im Rahmen eines EU-Projektes weiße Leuchtdioden (LEDs), die auf Nanosäulen basieren. Dadurch könnte die Produktion von energiesparenden weißen LEDs deutlich billiger werden.

Abb. 1: Die oberste Schicht der GaN-Nanosäulen strahlt in einer anderen Wellenlänge, weil hier die Materialzusammensetzung verändert ist. Die Aufnahmen entstanden im Rasterelektronenmikroskop kombiniert mit Kathodolumineszensspektroskopie.
Quelle: Paul-Drude-Institut

Weißes Licht ist eine Mischung aus den verschiedenen Spektralfarben. Weiße LEDs bestehen in der Regel aus Galliumnitrid (GaN), das auf einem Saphirsubstrat Atomlage für Atomlage als dünne Schicht gezüchtet wird. Solche LEDs produzieren zunächst blaues Licht, das mit einem Lumineszenfarbstoff teilweise in gelbes Licht umgewandelt wird. Gelbes und blaues ergibt dann weißes Licht. Saphir als Substrat macht die Herstellung weißer LEDs jedoch sehr teuer, was der massenhaften Verbreitung der leuchtenden Winzlinge bislang noch im Wege steht. Außerdem hat das Licht der bisher erhältlichen LEDs noch nicht den optimalen Weißton.

Im Rahmen des EU-Projektes SMASH (Smart Nanostructured Semiconductors for Energy-Saving Light Solutions), das die Firma OSRAM (OS) koordiniert, wollen die Physiker anstatt der Schichten nun GaN-Säulen wachsen lassen. Das Saphir-Substrat wollen sie durch preiswertes Silizium ersetzen, das gängige Material in der Halbleitertechnik. Bislang konnte man Silizium nicht als Substrat verwenden, da GaN-Schichten darauf nicht gut wachsen: Die Kristalleigenschaften der beiden Materialien sind zu unterschiedlich, weshalb es zu Verspannungen und Defekten in der GaN-Schicht kommt und dadurch die Lichtausbeute verringert wird.

Bei Nanosäulen ist das anders. "Der Einfluss des Substrats auf das Wachstum von Nanosäulen ist viel geringer, Verspannungen haben sich nach wenigen Atomschichten 'rausgewachsen'", erläutert Dr. Achim Trampert vom PDI. Erste Versuche zeigen, dass die GaN-Säulen hervorragende Kristalleigenschaften haben. Auch weisen die Säulen eine große Oberfläche auf und können somit mehr Licht bei gleicher Grundfläche abstrahlen. Das erhöht die Lichtausbeute der LEDs. Um weißes Licht zu erhalten, wollen die Forscher innerhalb der GaN-Säulen Schichten mit verschiedenem Indiumgehalt erzeugen. Der Indiumgehalt bestimmt die Wellenlänge, also die Farbe des Lichts. Die Säulen strahlen aus verschiedenen Schichten verschiedenfarbiges Licht ab, was insgesamt weißes Licht ergibt. Eine Umwandlung von farbigem Licht ist dann nicht mehr nötig.

Die Wissenschaftler müssen dabei noch viele Probleme lösen, zum Beispiel, dass die Säulen derzeit noch unregelmäßig wachsen. Idealerweise sollen sie alle exakt gleich groß sein und die gleichen Abstände zueinander haben. Auch wie viel Indium sich unter welchen Bedingungen beimischen lässt, muss noch im Detail geklärt werden. Die Aufgabe der PDI-Forscher wird es vor allem sein, zu untersuchen wie sich der Prozess des Wachstums der Nanosäulen und ihre Zusammensetzung auf ihre optischen und strukturellen Eigenschaften auswirkt. Dazu verwenden sie spektroskopische und mikroskopische Messmethoden mit hoher Auflösung.

Die Beleuchtung verbraucht heute 20 Prozent der gesamten Energie in Deutschland. Da LEDs bei weitem die effizientesten Lichtquellen sind, ließe sich mit ihnen viel Strom sparen. Bis dahin wird es jedoch noch etwas dauern: "Erst wenn weiße LEDs so günstig sind, dass sie als Massenware produziert werden können, werden sie andere Leuchtmittel in großem Stil ablösen", ist sich Dr. Achim Trampert sicher.

Kontakt:

Dr. Achim Trampert, Paul-Drude-Institut für Festkörperphysik, Tel.: 030 20377 280, trampert [at] pdi-berlin.de

Bitte zitieren Sie die Seite wie folgt:

GaN-Nanosäulen könnten kostengünstige, weisse LEDs ermöglichen
(URL: https://www.organische-chemie.ch/chemie/2010/jan/led.shtm)

Verwandte Themen:

Materials Science, Nanotechnologie