Portal für Organische Chemie

Chemie-Nachrichten > November

30.11.10 Molekulare Vorgänge beim Diamantenschleifen simuliert

Wie Diamant weich wird

Nach Jahrhunderten entschlüsseln Forscher vom Freiburger Fraunhofer-Institut für Werkstoffmechanik den atomaren Mechanismus des Diamantschleifens

Es ist das härteste Material der Welt, und doch lässt sich Diamant nicht nur dazu benutzen, andere Werkstoffe zu bearbeiten, sondern lässt sich auch selbst schleifen. Bereits vor 600 Jahren wurden erste Diamanten geschliffen und die edlen Steine wurden schnell zum teuersten Schmuck und später zum unersetzlichen Industriewerkzeug. Jetzt hat ein Team um Dr. Lars Pastewka und Prof. Michael Moseler das Geheimnis gelüftet, warum sich Diamant überhaupt bearbeiten lässt. Die neuen Erkenntnisse sind ein großer Schritt in der Tribologie, also der Reibungs- und Verschleißforschung, die heute trotz ihrer großen Bedeutung für die Industrie in ihren wissenschaftlichen Grundlagen noch weitgehend unverstanden ist.

Abb. 1: Abtragsmechanismen beim Diamantpolieren: Ein scharfkantiger Diamantsplitter schält einen Staubpartikel von der glasartigen Phase auf der Diamantoberfläche ab. Gleichzeitig reagiert Luftsauerstoff mit den Kohlenstoffketten auf der Oberfläche zu Kohlendioxid.
Quelle: Fraunhofer-Institut für Werkstoffmechanik Freiburg

Seit Jahrhunderten werden Diamanten von erfahrenen Handwerkern an einem Gußeisenrad geschliffen, das mit feinen Diamantsplittern gespickt ist und sich schnell, mit Umfangsgeschwindigkeiten von etwa 30 Meter in der Sekunde, dreht. Am Ton des Schleifrads und mit ihrem sprichwörtlichen Fingerspitzengefühl erkennen erfahrene Diamantschleifer, wie sie den Rohdiamant halten müssen, um ihn zu glätten und eine polierte Oberfläche zu bekommen. Dass Diamant richtungsabhängig reagiert, sei schon lange bekannt, sagt Lars Pastewka. Die Kohlenstoffatome im Diamantgitter formen Ebenen und je nachdem, wie man den Diamant dreht, trägt man Ebenen ab, die leichter oder schwerer polierbar sind.

Seit Jahrhunderten suchen Forscher nach einer schlüssigen Erklärung dieser empirisch belegten Anistropie – bisher ohne Erfolg. Genauso wenig konnte bislang erklärt werden, wie es sein kann, dass sich das härteste Material überhaupt bearbeiten lässt. Die Freiburger Wissenschaftler haben beide Fragen jetzt mit Hilfe einer neu entwickelten Rechenmethode beantwortet.

Das Ergebnis bringt Michael Moseler für Laien so auf den Punkt: "In dem Moment, in dem der Diamant geschliffen wird, ist der Diamant kein Diamant mehr." In einem mechano-chemischen Prozess entstehe – durch die schnelle Reibung zwischen den Diamantsplittern im Gusseisenrad und dem Rohdiamanten, der geschliffen werden soll – eine völlig andere, glasartige Kohlenstoffphase auf der Edelsteinoberfläche. Wie schnell diese Materialphase entsteht, hängt entscheidend von der Kristallorientierung des Rohdiamanten ab. "Genau hier kommt also besagte Anisotropie ins Spiel", erläutert Moseler.

Das neu entstandene Material auf der Diamantoberfläche, so Moseler, werde letztlich auf zweierlei Wegen "abgeschält": Der Hobeleffekt der scharfkantigen Diamantsplitter im Rad kratze kontinuierlich kleine Kohlenstoff-Staubpartikel von der Oberfläche ab, was im Urzustand so gar nicht möglich wäre, weil der Diamant viel zu hart und die Bindungskräfte daher viel zu hoch wären. Den zweiten, genauso bedeutenden Angriff auf die sonst undurchdringlich harte Kristalloberfläche übernimmt der Sauerstoff in der Luft. O2-Moleküle binden jeweils ein Kohlenstoffatom (C) aus den labilen, langen Kohlenstoffketten, die sich oben auf der glasigen Phase gebildet haben. Es entsteht Kohlendioxid.

Und wie ließ sich berechnen, wann und wie einzelne Atome aus der kristallinen Oberfläche herausgelöst werden? "Voraussetzung dafür war, dass wir uns genau angeschaut haben, was quantenmechanisch passiert, wenn eine Bindung zwischen den Atomen an der Oberfläche des Rohdiamanten bricht. Dafür haben wir das jeweilige Kraftfeld zwischen den Atomen genau analysiert", erläutert Lars Pastewka.

Kenne man diese Kräfte genau genug, könne man das Brechen und das erneute entstehen von chemischen Bindungen zwischen den Atomen exakt beschreiben – und modellieren. "Und auf dieser Basis haben wir die Dynamik der Atome in der Reibfläche zwischen einem Diamantsplitter und dem Edelstein untersucht", ergänzt Pastewka. Dazu haben er und seine Kollegen die Bahnen von rund 10.000 Diamantatomen berechnet und so am Bildschirm verfolgt. Ihre Gleichung ging auf: Ihr Modell kann sämtliche Prozesse des staubigen und nicht nur deshalb lange undurchsichtigen Diamantschleifens erklären.

Das entwickelte Modell ist nicht nur ein Meilenstein in der Diamantforschung, "es demonstriert viel mehr auch wie mit modernen Methoden der Werkstoffsimulation Reibungs- und Verschleißprozesse von der atomaren Ebene bis zum makroskopischen Objekt exakt beschrieben werden können", meint Institutsleiter Prof. Peter Gumbsch. Er sieht dies als ein Beispiel aus der Vielzahl von Verschleißfragen, die in der Industrie noch auf eine Lösung warten. Diesen will sich das Fraunhofer IWM in seinem Mikrotribologiezentrum µTC unter dem Motto zuwenden: "Tribologie berechenbar machen".

Quelle:

Anisotropic mechanical amorphisation drives wear in diamond
L. Pastewka, et al., Nat. Mat. 2010. DOI: 10.1038/nmat2902

Bitte zitieren Sie die Seite wie folgt:

Molekulare Vorgänge beim Diamantenschleifen simuliert
(URL: https://www.organische-chemie.ch/chemie/2010/nov/nanorotor.shtm)

Verwandte Themen:

Materials Science, Anorganische Chemie