Portal für Organische Chemie

Chemie-Nachrichten > September

02.09.10 Protonendiode in Bakteriorhodopsin funktioniert mit Hilfe von Wassermolekülen

Forscher entdecken Protonendiode in Bakteriorhodopsin

Proteingebundene Wassermoleküle sind wichtige katalytische Bauelemente in Proteinen

Bochumer Biophysiker haben eine Diode für Protonen entdeckt: Genau wie das elektronische Bauteil die Flussrichtung des elektrischen Stroms vorgibt, sorgt die „Protonendiode“ dafür, dass Protonen nur in eine Richtung durch eine Zellmembran geschleust werden können. Wassermoleküle spielen dabei als aktive Bauteile der Diode eine wichtige Rolle. Die Forscher um Prof. Dr. Klaus Gerwert (Lehrstuhl für Biophysik der RUB) konnten das durch eine Kombination aus Molekularbiologie, Röntgenstrukturanalyse, zeitaufgelöster FTIR-Spektroskopie und Biomolekularen Simulationen beobachten.

Abb. 1: Die Protonendiode in der lichtgetriebenen Protonenpumpe Bakteriorhodopsin. Die Vergrößerungen rechts zeigen oben den geschlossenen (isolierenden) Zustand und rechts unten den geöffneten (leitenden) Zustand.
Quelle: RUB

Protonen treiben Proteinturbinen an

Die Protonendiode spielt eine wichtige Rolle bei der Energiegewinnung von Zellen. Lichtgetriebene Protonenpumpen – bestimmte Proteine, die die Zellmembran durchspannen – schleusen Protonen aus der Zelle heraus, so dass außen ein Überdruck entsteht, „ganz ähnlich wie der Wasserdruck an einer Staumauer“, verdeutlicht Prof. Gerwert. An anderer Stelle drängen die Protonen wieder in die Zellen hinein um das Konzentrationsgefälle auszugleichen, und treiben dabei die Turbinen der Zelle an, Proteine namens ATP-asen. Die dabei freiwerdende Energie wird umgewandelt in den universellen Kraftstoff der Zellen, ATP (Adenosintriphosphat). „Dieser Ablauf ist eine Art archaische Photosynthese“, erklärt Prof. Gerwert. „Die Lichtenergie wird letztlich in für den Organismus nutzbare Energie umgewandelt.“

Früher glaubte man an Zufall

Die Details dieser Vorgänge sind Gegenstand der Forschung. Besonders die Rolle der Wassermoleküle in Proteinen war lange unklar. „Früher glaubte man, dass die Wassermoleküle durch Zufall in Proteine hineingeraten würden und keine besondere Funktion erfüllten“, so Gerwert. Der in Bochum geborene Manfred Eigen wurde 1967 mit dem Nobelpreis für Chemie ausgezeichnet, weil er erklären konnte, warum Wasser und Eis Protonen extrem schnell leiten können. Die aktuelle Arbeit zeigt, dass auch Proteine genau diesen Mechanismus nutzen und die Wassermoleküle im Protein sehr wohl eine aktive Funktion ausüben.

Film statt Standbild

Die Bochumer Forscher konnten ihre Ergebnisse in einem interdisziplinären Ansatz durch eine Kombination aus Molekularbiologie, Röntgenstrukturanalyse, zeitaufgelöster FTIR-Spektroskopie und Biomolekularen Simulationen erzielen. Diese Kombination zeigt die dynamischen Vorgänge im Protein nach Lichtanregung mit atomarer Auflösung. „Man kann verfolgen, wie das Proton von der zentralen Protonenbindestelle im Innern des Proteins über eine Aminosäure und dann über einen protonierten Wassercluster an die Membranoberfläche transportiert wird“, beschreibt Prof. Gerwert. Der interdisziplinäre Ansatz erweitert jetzt die klassischen Methoden der Strukturbiologie, Röntgenstrukturanalyse und Kernspinresonanzspektroskopie (NMR), da er einen kompletten Film liefert und nicht nur Standbilder von Proteinen. Die Experimente wurden durch Computersimulationen ergänzt.

Quelle:

Gerichteter Protonentransfer in Membranproteinen mittels protonierter proteingebundener Wassermoleküle: eine Protonendiode
S. Wolf, et. al., Angew. Chem. 2010. DOI: 10.1002/ange.201001243

Bitte zitieren Sie die Seite wie folgt:

Protonendiode in Bakteriorhodopsin funktioniert mit Hilfe von Wassermolekülen
(URL: https://www.organische-chemie.ch/chemie/2010/sep/protonendiode.shtm)

Verwandte Themen:

Life Sciences, Physikalische Chemie