14.03.10 Azobindungen in Wirkstoffen erlauben lichtgesteuerte Aktivierung
Molekulare Lichtschalter
Lichtgesteuerte Proteinbindung einer biologisch relevanten β-Faltblattstruktur
Moleküle, die erst bei Bestrahlung mit Licht ihre biologische Funktion entfalten, könnten an genau definierter Stelle im Organismus "angeschaltet" werden. Wissenschaftlern vom Leibniz-Institut für Molekulare Pharmakologie (FMP) und von der Technischen Universität Berlin ist es gelungen, solche lichtsensiblen molekularen Strukturen zu entwickeln. Als Vorbild diente ihnen dabei der Sehprozess im Auge.
Abb. 1: Eine Azobenzol-ω-Aminosäure wurde als Photoschalter in ein
β-Haarnadelmotiv eingebaut, das ein Mimetikum der Bindungsstelle der neuronalen NO-Synthase für das
α-Syntrophin ist. Die lichtinduzierte Isomerisierung überführt das stabile monomere Modellpeptid reversibel aus seiner nichtbindenden
trans-Form in die ein β-Faltblatt bildende cis-Form, die eine bemerkenswerte Affinität für
α-Syntrophin aufweist
Quelle: Angewandte Chemie
Lösliche Substanzen, also auch Medikamente, werden in der Regel im Gießkannenprinzip im Körper verteilt. Sie erreichen so zwar ihre Zielproteine - allerdings auch dort, wo dies gar nicht erwünscht ist. Wissenschaftler versuchen daher Methoden zu entwickeln, mit denen sie die Funktion von Wirkstoffen räumlich und zeitlich genau steuern können. Um ein ausgewähltes Areal von Zellen - etwa die Zellen eines Tumors - zu erreichen, muss der entsprechende Wirkstoff möglichst örtlich begrenzt in eine aktive Form überführt werden und beim Verlassen des Areals wieder in die inaktive Form überführbar sein. Wissenschaftlern vom Leibniz-Institut für Molekulare Pharmakologie (FMP) ist ein entscheidender Schritt in diese Richtung gelungen: Sie haben einen Lichtschalter in ein Peptidmodell eingefügt, das einen Teil eines biologisch aktiven Proteins modelliert. Befindet sich der Schalter im Grundzustand, hindert er das Peptid daran, an das Protein zu binden. Wird der Schalter durch Bestrahlung "umgelegt", lässt er die Bindung des Peptids an sein Zielprotein zu. Christian Hoppmann vom FMP erläutert: "Mit diesem Modellpeptid können wir die entsprechende natürliche Protein-Protein-Wechselwirkung und damit die entsprechende Signalkette mittels Licht steuern."
Ein Peptid ist ein kleines Protein, wie dieses besteht es aus Aminosäuren in einer definierten Reihenfolge, die die biologische Information zur Wechselwirkung mit anderen Molekülen wie Proteinen enthält. Ein bekanntes Peptid ist Insulin zur Regulierung des Blutzuckerspiegels, ebenso Gastrin, das die Produktion von Magensäure anregt. Peptide beeinflussen also gezielt Funktionen des Körpers - genau das sollen auch Medikamente tun - und darüber hinaus haben sie als körpereigene Substanzen den Vorteil, kaum Abwehrreaktionen des Körpers hervorzurufen. Peptide können ihre Form verändern, indem sie untereinander Wasserstoffbrückenbindungen ausbilden. Diese sogenannte Sekundärstruktur kann eine Helix, also eine Spirale, oder ein Haarnadel-β-Faltblatt sein. Gelingt es mit Hilfe eines molekularen Schalters, in einem Peptid, die Sekundärstruktur zu destabilisieren oder zu fördern, lässt sich damit die Peptideigenschaft kontrollieren.
Der molekulare Schalter, den die FMP-Wissenschaftler in das Peptid eingebaut haben, liegt im Grundzustand in der gestreckten trans-Form vor. In dieser Form hält der Schalter die beiden Ketten des Peptids auseinander und hindert sie daran, eine Sekundärstruktur zu bilden. Durch Bestrahlung mit UV-Licht der Wellenlänge von ca. 330 Nanometern wird der Schalter in die cis-Form überführt, die den beiden flankierenden Peptidketten erlaubt, miteinander Wasserstoffbrückenbindungen und damit eine Sekundärstruktur auszubilden. Mit dem Schalter in der cis-Form wandelt sich das Peptid also in die für die Wechselwirkung mit dem Protein notwendige Haarnadel-β-Faltblattstruktur um. Das Peptid bindet so an die spezifischen Stellen im Protein. Christian Hoppmann sagt: "Wir haben uns das Prinzip beim Sehprozess abgeguckt. Beim Sehen passiert nämlich auf der Retina genau das Gleiche: Durch Lichteinfall wird in dem natürlichen Schaltersystem ein Übergang von cis- zu trans-Form bewirkt, wodurch eine Strukturänderung in dem beteiligten Protein ausgelöst und das Signal übertragen wird."
Quelle:
Lichtgesteuerte Proteinbindung einer biologisch relevanten β-Faltblattstruktur
C. Hoppmann, et. al., Angew. Chem. 2010, DOI:
10.1002/ange.200901933
Bitte zitieren Sie die Seite wie folgt:
Azobindungen in Wirkstoffen erlauben
lichtgesteuerte Aktivierung
(URL: https://www.organische-chemie.ch/chemie/2010/mae/azoverbindung.shtm)
Verwandte Themen:
Medizinalchemie, Physikalische Chemie