Portal für Organische Chemie

Chemie-Nachrichten > Oktober

28.10.11 Mit Laserstreckbank Proteinfaltung untersuchen

"Streckbank" für winzige Moleküle

TUM-Wissenschaftler erfassen Dynamik der Proteinfaltung

Wissenschaftler der Technischen Universität München (TUM) haben einen wichtigen Schritt getan, um die Abläufe in biologischen Zellen besser zu verstehen. Mit einer am TUM-Lehrstuhl für Biophysik entwickelten Methode können sie ein einzelnes Protein festhalten und auseinanderziehen. Die Streckvorrichtung – eine optische Pinzette für winzige Moleküle – macht die Faltung und Entfaltung von Proteinen kontinuierlich messbar. Bis zu ihrer endgültigen Faltung folgen Protein-Moleküle einer Vielzahl struktureller und kinetischer Pfade, die mitunter in Sackgassen oder auch in Schnellstraßen münden.

Proteinfaltung

Abb. 1: Mithilfe von Laserstrahlen werden Proteine wie zwischen Daumen und Zeigefinger festgehalten, um die Proteinfaltung näher zu untersuchen
Quelle: Johannes Stigler, TU München

Wie die Proteine in ihre dreidimensionale Form gelangen, ist eine der wichtigsten Fragen der Biowissenschaften und der Medizin. Denn Fehler im Faltungsprozess von Proteinen sind für Krankheiten wie Alzheimer und Parkinson verantwortlich. Die Funktionen und auch die Fehlfunktionen von Proteinen werden größtenteils durch ihre Struktur bestimmt. Wissenschaftler der TU München verfolgen deshalb seit Jahren verschiedene Ansätze, die Faltungsprozesse besser zu verstehen. In ihren neuesten Experimenten untersuchen sie das Calmodulin-Molekül. Es gehört zu den häufigsten Eiweißen im menschlichen Organismus und fungiert als wichtiger Signalgeber für Zellabläufe. Während Röntgenstrukturen „Schnappschüsse“ von der Faltung einzelner Moleküle machen, erzeugt der neuartige Ansatz von Prof. Matthias Rief und seinen TUM-Kollegen nun bewegte Bilder. Zwar sind diese Aufnahmen verschwommen, weil sie nur die Länge der Moleküle erfassen. Sie ermöglichen es aber, die Dynamik des Faltungsprozesses in einer neuen Genauigkeit zu untersuchen.

Neben Prof. Rief waren die TUM-Doktoranden Johannes Stigler, Fabian Ziegler, Anja Gieseke und Christof Gebhardt (jetzt Postdoc an der Harvard University) an den Experimenten beteiligt. Forschungsmittel des Institute for Advanced Study der TU München ermöglichten dem Lehrstuhl die Anschaffung einer ultra-stabilen und hoch auflösenden „optischen Pinzette“. Mithilfe von Laserstrahlen kann das Gerät auch kleinste Objekte wie zwischen Daumen und Zeigefinger festhalten.

Bevor das Calmodulin-Molekül gestreckt werden kann, wird es eingespannt. Dazu bringen es die Forscher zwischen zwei robusteren Molekülen des Proteins Ubiquitin ein. Rückstände der Aminosäure Cystein an den äußeren Enden dieses Molekül-Sandwiches ermöglichen die Verknüpfung mit Griffen aus DNA-Molekülen. Diese Griffe wiederum sind mit kleinen Glasperlen verbunden, die nur einen Mikrometer messen. Die Glasperlen – und mit ihnen das Calmodulin-Molekül - können dann mithilfe der optischen Pinzette auseinander gezogen werden. Mit dieser Versuchsanordnung konnten die Wissenschaftler das Protein in unterschiedliche Richtungen bis zu seiner vollen Länge dehnen und es mit nachlassender Spannung jeweils wieder in den Ausgangszustand versetzen. Gemessen wurden die Proteinlänge, die angelegten mechanischen Kräfte und die Dauer des Prozesses. Als Versuchsumgebung diente eine wässrige Lösung mit Calciumionen, die stabile Faltungsprozesse favorisiert und den natürlichen Bedingungen in der Zelle nahe kommt.

Laseranordnung

Abb. 2: Die optische Pinzette
Quelle: Johannes Stigler, TU München

Die Versuchsergebnisse machen nun deutlich, dass die Faltungsprozesse von verschiedenen Teilbereichen des Calmodulin-Moleküls zwar eigenständig ablaufen, sich aber dennoch gegenseitig fördern oder blockieren können. “Die Faltung eines Calmodulin-Moleküls lässt sich mit einem komplizierten Geflecht von Pfaden vergleichen”, erklärt Prof. Matthias Rief. “Sie leiten Teile des Proteins durch unterschiedliche energetische Zustände wie durch Berge und Täler. Und während ein Faltungspfad in eine Sackgasse führt, mündet ein anderer womöglich in eine Schnellstraße. Über diese erreichen bestimmte Molekülteile dann ihre endgültige Faltung sehr viel schneller als das Gesamtmolekül selbst”, sagt Rief.

Zwar ist das Calmodulin-Molekül im Vergleich zu den meisten anderen menschlichen Proteinen ziemlich klein. Dennoch weist es eine komplizierte Faltung auf. “In der Natur sind sogar weitaus komplexere Strukturen die Regel. Mithilfe der Untersuchung einzelner Moleküle tragen wir schrittweise dazu bei, sie besser zu verstehen”, fasst Prof. Rief zusammen..

Quelle:

The Complex Folding Network of Single Calmodulin Molecules
J. Stigler, et. al., Science 2011. DOI: 10.1126/science.1207598

Bitte zitieren Sie die Seite wie folgt:

Mit Laserstreckbank Proteinfaltung untersuchen
(URL: https://www.organische-chemie.ch/chemie/2011/okt/proteinfaltung.shtm)

Verwandte Themen:

Life Sciences